64 research outputs found

    Reinforcement learning-based school energy management system

    Get PDF
    Energy efficiency is a key to reduced carbon footprint, savings on energy bills, and sustainability for future generations. For instance, in hot climate countries such as Qatar, buildings are high energy consumers due to air conditioning that resulted from high temperatures and humidity. Optimizing the building energy management system will reduce unnecessary energy consumptions, improve indoor environmental conditions, maximize building occupant's comfort, and limit building greenhouse gas emissions. However, lowering energy consumption cannot be done despite the occupants' comfort. Solutions must take into account these tradeoffs. Conventional Building Energy Management methods suffer from a high dimensional and complex control environment. In recent years, the Deep Reinforcement Learning algorithm, applying neural networks for function approximation, shows promising results in handling such complex problems. In this work, a Deep Reinforcement Learning agent is proposed for controlling and optimizing a school building's energy consumption. It is designed to search for optimal policies to minimize energy consumption, maintain thermal comfort, and reduce indoor contaminant levels in a challenging 21-zone environment. First, the agent is trained with the baseline in a supervised learning framework. After cloning the baseline strategy, the agent learns with proximal policy optimization in an actor-critic framework. The performance is evaluated on a school model simulated environment considering thermal comfort, CO2 levels, and energy consumption. The proposed methodology can achieve a 21% reduction in energy consumption, a 44% better thermal comfort, and healthier CO2 concentrations over a one-year simulation, with reduced training time thanks to the integration of the behavior cloning learning technique. 2020 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: This publication was made possible by the National Priority Research Program (NPRP) grant [NPRP10-1203-160008] from the Qatar National Research Fund (a member of Qatar Foundation) and the co-funding by IBERDROLA QSTP LLC. The findings achieved herein are solely the responsibility of the authors.Scopus2-s2.0-8510663929

    A Novel Features-Based Multivariate Gaussian Distribution Method for the Fraudulent Consumers Detection in the Power Utilities of Developing Countries

    Get PDF
    According to statistics, developing countries all over the world have suffered significant non-technical losses (NTLs) both in natural gas and electricity distribution. NTLs are thought of as energy that is consumed but not billed e.g., theft, meter tampering, meter reversing, etc. The adaptation of smart metering technology has enabled much of the developed world to significantly reduce their NTLs. Also, the recent advancements in machine learning and data analytics have enabled a further reduction in these losses. However, these solutions are not directly applicable to developing countries because of their infrastructure and manual data collection. This paper proposes a tailored solution based on machine learning to mitigate NTLs in developing countries. The proposed method is based on a multivariate Gaussian distribution framework to identify fraudulent consumers. It integrates novel features like social class stratification and the weather profile of an area. Thus, achieving a significant improvement in fraudulent consumer detection. This study has been done on a real dataset of consumers provided by the local power distribution companies that have been cross-validated by onsite inspection. The obtained results successfully identify fraudulent consumers with a maximum success rate of 75%. 2013 IEEE.This work was supported by the Qatar National Library.Scopus2-s2.0-8510734936

    Factors pertaining to academic probation of engineering students: A case study

    Get PDF
    Ensuring normal progression of students isof paramount importance due to its financial implications in a higher education institution. An indicator that reflects how well an institution is doing in this respect is in the number of students on probation. This study was conducted through a survey to determine the underlying factors that lead to academic probation by the students in order to help in recommending remedial measures. As a case study, the survey was carried out on students in the College of Engineering at Sultan Qaboos University (Oman) who were on academic probation by the end of fall semester. This study has revealed that failure in basic science courses is a major contributing factor. Other factors are the students' poor study habits, inability to concentrate and lack of academic advising in some cases. Recommended remedial measures include establishing drop-in centers to provide individual tutoring, and an advising unit in each department. A course on study skills and time management is recommended for all new students.qscienc

    Enhanced Deadbeat Control Approach for Grid-Tied Multilevel Flying Capacitors Inverter

    Get PDF
    This paper proposes an enhanced Deadbeat Controller (DBC) for a grid-tied Flying Capacitors Inverter (FCI). The proposed DBC guarantees the balancing of the capacitors' voltages while injecting current to the grid with lower Total Harmonics Distortion (THD). The proposed controller has the following advantages: 1) Improved current tracking quality even at zero crossing instants by using a weighted state-space model, 2) Superior steady-state performance (lower current THD) compared to other prediction-based control techniques such as Finite-Control-Set Model Predictive Control, 3) The generated duty cycles are normalized to the common base when the desired state is out of reach within the sampling time, 4) Voltage Ride-Through (VRT) capability, and 5) Robustness to parameters variation. Theoretical analysis, simulation, and experimental results are presented to show the effectiveness of the proposed control technique in ensuring uninterruptible and smooth transfer of energy to the grid during normal/abnormal operating conditions (severe voltage sags, parameters variation, etc.)

    Planning and Optimizing Electric-Vehicle Charging Infrastructure Through System Dynamics

    Get PDF
    One of the key solutions to address the issue of energy efficiency and sustainable mobility is to integrate plug-in electric vehicle (EV) infrastructure and photovoltaic (PV) systems. The research proposes a comprehensive EV infrastructure planning and analysis tool (EVI-PAT) with solar power generation for micro-scale projects for the deployment of EV Charging Stations (EVCS). For the evaluation of the proposed infrastructure, a case study of Qatar University (QU) campus is chosen for the integration of the EV charging infrastructure and PV power generation to evaluate the performance of the presented framework. The model estimates the EV adoption and the number of vehicles based on the inputs related to the country's EV adoption, campus vehicle count, and driving behavior. Economic and environmental indicators are used for evaluating policy choices. The findings in the paper show that the proposed planning framework can find the optimum staging plan for EV and PV infrastructure based on the policy choices. The staging plan optimizes the sizes and times of installing EVCSs combined with solar PV keeping the EV-PV project at maximum economic and environmental targets. The optimum policy can affect the optimum power infrastructure limit to maximize the economic benefit by the solar tariff.10.13039/100019779-Qatar National Librar

    Lightweight KPABE Architecture Enabled in Mesh Networked Resource-Constrained IoT Devices

    Get PDF
    Internet of Things (IoT) environments are widely employed in industrial applications including intelligent transportation systems, healthcare systems, and building energy management systems. For such environments of highly sensitive data, adapting scalable and flexible communication with efficient security is vital. Research investigated wireless Ad-hoc/mesh networking, while Attribute Based Encryption (ABE) schemes have been highly recommended for IoT. However, a combined implementation of both mesh networking and Key-Policy Attribute Based Encryption (KPABE) on resource-constrained devices has been rarely addressed. Hence, in this work, an integrated system that deploys a lightweight KPABE security built on wireless mesh networking is proposed. Implementation results show that the proposed system ensures flexibility and scalability of self-forming and cooperative mesh networking in addition to a fine-grained security access structure for IoT nodes. Moreover, the work introduces a case study of an enabled scenario at a school building for optimizing energy efficiency, in which the proposed integrated system architecture is deployed on IoT sensing and actuating devices. Therefore, the encryption attributes and access policy are well-defined, and can be adopted in relevant IoT applications. 2013 IEEE.This publication was made possible by the National Priority Research Program (NPRP) grant [NPRP10-1203-160008] from the Qatar National Research Fund (a member of Qatar Foundation) and the co-funding by the IBERDROLA QSTP LLC. The publication of this article was funded by the Qatar National Library. The findings achieved herein are solely the responsibility of the authors.Scopus2-s2.0-8509909047

    Integrated Multi-Criteria Model for Long-Term Placement of Electric Vehicle Chargers

    Get PDF
    Based on the global greenhouse gas (GHG) emissions targets, governments all over the world are speeding up the adoption of electric vehicles (EVs). However, one of the key challenges in designing the novel EV system is to forecast the accurate time for the replacement of conventional vehicles and optimization of charging vehicles. Designing the charging infrastructure for EVs has many impacts such as stress on the power network, increase in traffic flow, and change in driving behaviors. Therefore, the optimal placement of charging stations is one of the most important issues to address to increase the use of electric vehicles. In this regard, the purpose of this study is to present an optimization method for choosing optimal locations for electric car charging stations for Campus charging over long-term planning. The charger placement problem is formulated as a complex Multi-Criteria Decision Making (MCDM) which combines spatial analysis techniques, power network load flow, traffic flow models, and constrained procedures. The Analytic Hierarchy Process (AHP) approach is used to determine the optimal weights of the criteria, while the mean is used to determine the distinct weights for each criterion using the AHP in terms of accessibility, environmental effect, power network indices, and traffic flow impacts. To evaluate the effectiveness of the proposed method, it is applied to a real case study of Qatar University with collected certain attributes data and relevant decision makers as the inputs to the linguistic assessments and MCDM model. The Ranking of the optimal locations is done by aggregating four techniques: Simple Additive Weighting Method (SAW, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Grey Relational Analysis (GRA), and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE-II). A long-term impact analysis is a secondary output of this study that allows decision-makers to evaluate their policy impacts. The findings demonstrate that the proposed framework can locate optimal charging station sites. These findings could also help administrators and policymakers make effective choices for future planning and strategy

    The simultaneous impact of EV charging and PV inverter reactive power on the hosting distribution system's performance: A case study in kuwait

    Get PDF
    Recently, electric vehicles (EVs) have become an increasingly important topic in the field of sustainable transportation research, alongside distributed generation, reactive power compensation, charging optimization, and control. The process of loading on existing power system infrastructures with increasing demand requires appropriate impact indices to be analyzed. This paper studies the impact of integrating electric vehicle charging stations (EVCSs) into a residential distribution network. An actual case study is modeled to acquire nodal voltages and feeder currents. The model obtains the optimal integration of solar photovoltaic (PV) panels with charging stations while considering reactive power compensation. The impact of EV integration for the case study results in two peaks, which show a 6.4% and 17% increase. Varying the inverter to the PV ratio from 1.1 to 2 decreases system losses by 34% to 41%. The type of charging is dependent on the maximum penetration of EVCSs that the network can install without system upgrades. Increasing the number of EVCSs can cause an increase in power system losses, which is dependent on the network architecture. Installing PV reduces the load peak by 21%, and the installation of PV with consideration of reactive power control increases system efficiency and power delivery. 2020 by the authors.Scopus2-s2.0-8509088409

    Differential Flatness-Based Performance Enhancement of a Vector Controlled VSC with an LCL-Filter for Weak Grids

    Get PDF
    In this paper, a novel single-loop flatness-based controller (FBC) is proposed to control the grid-side current in a shunt converter connected to a weak grid through an LCL-filter. After its mathematical description, the paper reports controller implementation and some performance comparisons with two distinct implementations of the widely diffused vector current control approach, during balanced and unbalanced grid voltages, and weak grid conditions. Obtained results highlight higher tracking capability and better dynamic response of the proposed FBC. Moreover, because of its reduced negative conductance region, unstable behaviors that can be observed in weak grids appear significantly improved due to a reduced influence of the phase-locked loop system
    • …
    corecore